
Parameterized Unit Tests for Opel and Vauxhall Brands 
Opel Automobile GmbH is a car maker of the Opel and British Vauxhall brands. 

The software and code for many embedded controllers of these vehicles with conventional and 
alternative engines are developed here. 

Reactis® - a product developed by Reactive Systems, Inc - was integrated in the global software 
development process already 10 years ago. This was an important initial effort and the tool is used 
now to validate software components and to perform parameterized unit tests. 

Application Example 
A good example for an application is the software actively controlling the particle filter of gasoline 
engines. This software will be integrated in a high number of engines to meet the newest emission 
standards. 

The software is safety relevant due to the very high operating temperatures of the filter during 
active regeneration. 

Therefore all software-components for the gasoline particle filter were tested each using Reactis. A 
component consists of an algorithm part, diagnostics and communication. To increase the Reactis 
performance the error management was slightly simplified by replacing some library blocks. This 
lead to a very high performance of Reactis compared to an integrated system of all these 
components (or even an integrated controller software). No initialisation step in Reactis takes more 
than a few seconds. 

Golden Situation 
We have reached a golden situation: 

 The tedious and unproductive work for manually programming code coverage inputs is 
eliminated. This is automated now. 

 The repeating of this manual work needed for all the production code variants is also 
eliminated of course and multiplies the benefit. 

 The methods for automating this (using formal methods etc.) is put into the hands of experts 
and can be shared with a wide community. 

 We can increase the software quality while also saving money. 

Why we selected Reactis 
We want to highlight here only a few features of Reactis which make this possible and are important 
reasons why we selected Reactis: 

 Guided execution (relation to symbolic or concolic execution) 
 Supporting also our own Simulink®-blockset for code generation consisting of custom level-

2-S-functions (Look-Up-Tables etc.) - the tool integration was considerably simplified. 
 The extremely good debugging to understand the software and to find the root cause of 

errors. (You only have to take care about non-executed code like disabled conditions or 
conditionally executed subsystems. Here the scopes show the last valid values) 

 Tracking of requirements down to the test report. 
 Very smart handling of calibration variants in Reactis and Simulink. 



Quality of the test cases 
The quality of the test-case input of a single automatically generated test case might be poorer than 
a manual created test case on the first glance. A simple example for this can be an accidental 
symmetry on two input signals of a function in the automatically generated test. This symmetry 
could hide for example that the two signals are erroneously twisted. But looking at a generated test 
suite will give a different result: The tool can easily surpass branch coverage (one short test case per 
condition). Increasing now the path coverage will produce more than one test per branch and the 
likelihood of accidental symmetries at the same position in all these longer tests will almost always 
disappear to zero due to the fact that the execution uses random values for the model inputs. 

Use Cases 
Here is a short incomplete list of different used cases how Reactis is used in the process: 

 After implementation the software must be executed without time-delay (caused e.g. by 
controller builds, simulation environment updates) to test changes. 
Assertions are added. 

 Compare software execution behaviour with requirements (Reactis Assert-Statements) 
 Generate inputs needed from environment: (automatic generation). 
 Execute all paths of the software behaviour automatically (coverage) 
 Compare behaviour of new and old implementation (change). 
 Compare behaviour of two different implementations (supplier/In-House) in a bisimulation. 

Conclusion 
The initial effort to implement Reactis is widely outperformed by the gain in speed and quality. The 
technology is mature. We can fully recommend Reactis and for us it is the benchmark for products of 
it’s kind having ever higher advantages for the demanding future needs. 

 

 

Reactis is a registered trademark of Reactive Systems, Inc.  
Simulink is a registered trademark of MathWorks, Inc. 


